3.6.69 \(\int \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^3 \, dx\) [569]

3.6.69.1 Optimal result
3.6.69.2 Mathematica [C] (verified)
3.6.69.3 Rubi [A] (verified)
3.6.69.4 Maple [A] (verified)
3.6.69.5 Fricas [B] (verification not implemented)
3.6.69.6 Sympy [F]
3.6.69.7 Maxima [A] (verification not implemented)
3.6.69.8 Giac [F(-1)]
3.6.69.9 Mupad [B] (verification not implemented)

3.6.69.1 Optimal result

Integrand size = 23, antiderivative size = 328 \[ \int \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^3 \, dx=\frac {(a+b) \left (a^2-4 a b+b^2\right ) \arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}-\frac {(a+b) \left (a^2-4 a b+b^2\right ) \arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}-\frac {(a-b) \left (a^2+4 a b+b^2\right ) \log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} d}+\frac {(a-b) \left (a^2+4 a b+b^2\right ) \log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} d}-\frac {2 b \left (3 a^2-b^2\right ) \sqrt {\tan (c+d x)}}{d}+\frac {2 a \left (a^2-3 b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 b \left (3 a^2-b^2\right ) \tan ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {40 a b^2 \tan ^{\frac {7}{2}}(c+d x)}{63 d}+\frac {2 b^2 \tan ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))}{9 d} \]

output
-1/2*(a+b)*(a^2-4*a*b+b^2)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))/d*2^(1/2)-1 
/2*(a+b)*(a^2-4*a*b+b^2)*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))/d*2^(1/2)-1/4* 
(a-b)*(a^2+4*a*b+b^2)*ln(1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/d*2^(1/2)+ 
1/4*(a-b)*(a^2+4*a*b+b^2)*ln(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/d*2^(1 
/2)-2*b*(3*a^2-b^2)*tan(d*x+c)^(1/2)/d+2/3*a*(a^2-3*b^2)*tan(d*x+c)^(3/2)/ 
d+2/5*b*(3*a^2-b^2)*tan(d*x+c)^(5/2)/d+40/63*a*b^2*tan(d*x+c)^(7/2)/d+2/9* 
b^2*tan(d*x+c)^(7/2)*(a+b*tan(d*x+c))/d
 
3.6.69.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 3.17 (sec) , antiderivative size = 164, normalized size of antiderivative = 0.50 \[ \int \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^3 \, dx=\frac {-315 (-1)^{3/4} (a-i b)^3 \arctan \left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right )+315 (-1)^{3/4} (a+i b)^3 \text {arctanh}\left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right )+2 \sqrt {\tan (c+d x)} \left (315 b \left (-3 a^2+b^2\right )+105 a \left (a^2-3 b^2\right ) \tan (c+d x)-63 b \left (-3 a^2+b^2\right ) \tan ^2(c+d x)+135 a b^2 \tan ^3(c+d x)+35 b^3 \tan ^4(c+d x)\right )}{315 d} \]

input
Integrate[Tan[c + d*x]^(5/2)*(a + b*Tan[c + d*x])^3,x]
 
output
(-315*(-1)^(3/4)*(a - I*b)^3*ArcTan[(-1)^(3/4)*Sqrt[Tan[c + d*x]]] + 315*( 
-1)^(3/4)*(a + I*b)^3*ArcTanh[(-1)^(3/4)*Sqrt[Tan[c + d*x]]] + 2*Sqrt[Tan[ 
c + d*x]]*(315*b*(-3*a^2 + b^2) + 105*a*(a^2 - 3*b^2)*Tan[c + d*x] - 63*b* 
(-3*a^2 + b^2)*Tan[c + d*x]^2 + 135*a*b^2*Tan[c + d*x]^3 + 35*b^3*Tan[c + 
d*x]^4))/(315*d)
 
3.6.69.3 Rubi [A] (verified)

Time = 1.22 (sec) , antiderivative size = 305, normalized size of antiderivative = 0.93, number of steps used = 23, number of rules used = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.957, Rules used = {3042, 4049, 27, 3042, 4113, 3042, 4011, 3042, 4011, 3042, 4011, 3042, 4017, 27, 1482, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^3 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \tan (c+d x)^{5/2} (a+b \tan (c+d x))^3dx\)

\(\Big \downarrow \) 4049

\(\displaystyle \frac {2}{9} \int \frac {1}{2} \tan ^{\frac {5}{2}}(c+d x) \left (20 a b^2 \tan ^2(c+d x)+9 b \left (3 a^2-b^2\right ) \tan (c+d x)+a \left (9 a^2-7 b^2\right )\right )dx+\frac {2 b^2 \tan ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))}{9 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{9} \int \tan ^{\frac {5}{2}}(c+d x) \left (20 a b^2 \tan ^2(c+d x)+9 b \left (3 a^2-b^2\right ) \tan (c+d x)+a \left (9 a^2-7 b^2\right )\right )dx+\frac {2 b^2 \tan ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))}{9 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{9} \int \tan (c+d x)^{5/2} \left (20 a b^2 \tan (c+d x)^2+9 b \left (3 a^2-b^2\right ) \tan (c+d x)+a \left (9 a^2-7 b^2\right )\right )dx+\frac {2 b^2 \tan ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))}{9 d}\)

\(\Big \downarrow \) 4113

\(\displaystyle \frac {1}{9} \left (\int \tan ^{\frac {5}{2}}(c+d x) \left (9 a \left (a^2-3 b^2\right )+9 b \left (3 a^2-b^2\right ) \tan (c+d x)\right )dx+\frac {40 a b^2 \tan ^{\frac {7}{2}}(c+d x)}{7 d}\right )+\frac {2 b^2 \tan ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))}{9 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{9} \left (\int \tan (c+d x)^{5/2} \left (9 a \left (a^2-3 b^2\right )+9 b \left (3 a^2-b^2\right ) \tan (c+d x)\right )dx+\frac {40 a b^2 \tan ^{\frac {7}{2}}(c+d x)}{7 d}\right )+\frac {2 b^2 \tan ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))}{9 d}\)

\(\Big \downarrow \) 4011

\(\displaystyle \frac {1}{9} \left (\int \tan ^{\frac {3}{2}}(c+d x) \left (9 a \left (a^2-3 b^2\right ) \tan (c+d x)-9 b \left (3 a^2-b^2\right )\right )dx+\frac {18 b \left (3 a^2-b^2\right ) \tan ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {40 a b^2 \tan ^{\frac {7}{2}}(c+d x)}{7 d}\right )+\frac {2 b^2 \tan ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))}{9 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{9} \left (\int \tan (c+d x)^{3/2} \left (9 a \left (a^2-3 b^2\right ) \tan (c+d x)-9 b \left (3 a^2-b^2\right )\right )dx+\frac {18 b \left (3 a^2-b^2\right ) \tan ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {40 a b^2 \tan ^{\frac {7}{2}}(c+d x)}{7 d}\right )+\frac {2 b^2 \tan ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))}{9 d}\)

\(\Big \downarrow \) 4011

\(\displaystyle \frac {1}{9} \left (\int \sqrt {\tan (c+d x)} \left (-9 a \left (a^2-3 b^2\right )-9 b \left (3 a^2-b^2\right ) \tan (c+d x)\right )dx+\frac {18 b \left (3 a^2-b^2\right ) \tan ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {6 a \left (a^2-3 b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{d}+\frac {40 a b^2 \tan ^{\frac {7}{2}}(c+d x)}{7 d}\right )+\frac {2 b^2 \tan ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))}{9 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{9} \left (\int \sqrt {\tan (c+d x)} \left (-9 a \left (a^2-3 b^2\right )-9 b \left (3 a^2-b^2\right ) \tan (c+d x)\right )dx+\frac {18 b \left (3 a^2-b^2\right ) \tan ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {6 a \left (a^2-3 b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{d}+\frac {40 a b^2 \tan ^{\frac {7}{2}}(c+d x)}{7 d}\right )+\frac {2 b^2 \tan ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))}{9 d}\)

\(\Big \downarrow \) 4011

\(\displaystyle \frac {1}{9} \left (\int \frac {9 b \left (3 a^2-b^2\right )-9 a \left (a^2-3 b^2\right ) \tan (c+d x)}{\sqrt {\tan (c+d x)}}dx+\frac {18 b \left (3 a^2-b^2\right ) \tan ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {6 a \left (a^2-3 b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{d}-\frac {18 b \left (3 a^2-b^2\right ) \sqrt {\tan (c+d x)}}{d}+\frac {40 a b^2 \tan ^{\frac {7}{2}}(c+d x)}{7 d}\right )+\frac {2 b^2 \tan ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))}{9 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{9} \left (\int \frac {9 b \left (3 a^2-b^2\right )-9 a \left (a^2-3 b^2\right ) \tan (c+d x)}{\sqrt {\tan (c+d x)}}dx+\frac {18 b \left (3 a^2-b^2\right ) \tan ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {6 a \left (a^2-3 b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{d}-\frac {18 b \left (3 a^2-b^2\right ) \sqrt {\tan (c+d x)}}{d}+\frac {40 a b^2 \tan ^{\frac {7}{2}}(c+d x)}{7 d}\right )+\frac {2 b^2 \tan ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))}{9 d}\)

\(\Big \downarrow \) 4017

\(\displaystyle \frac {1}{9} \left (\frac {2 \int \frac {9 \left (b \left (3 a^2-b^2\right )-a \left (a^2-3 b^2\right ) \tan (c+d x)\right )}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}}{d}+\frac {18 b \left (3 a^2-b^2\right ) \tan ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {6 a \left (a^2-3 b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{d}-\frac {18 b \left (3 a^2-b^2\right ) \sqrt {\tan (c+d x)}}{d}+\frac {40 a b^2 \tan ^{\frac {7}{2}}(c+d x)}{7 d}\right )+\frac {2 b^2 \tan ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))}{9 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{9} \left (\frac {18 \int \frac {b \left (3 a^2-b^2\right )-a \left (a^2-3 b^2\right ) \tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}}{d}+\frac {18 b \left (3 a^2-b^2\right ) \tan ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {6 a \left (a^2-3 b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{d}-\frac {18 b \left (3 a^2-b^2\right ) \sqrt {\tan (c+d x)}}{d}+\frac {40 a b^2 \tan ^{\frac {7}{2}}(c+d x)}{7 d}\right )+\frac {2 b^2 \tan ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))}{9 d}\)

\(\Big \downarrow \) 1482

\(\displaystyle \frac {1}{9} \left (\frac {18 \left (\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \int \frac {1-\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}-\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \int \frac {\tan (c+d x)+1}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}\right )}{d}+\frac {18 b \left (3 a^2-b^2\right ) \tan ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {6 a \left (a^2-3 b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{d}-\frac {18 b \left (3 a^2-b^2\right ) \sqrt {\tan (c+d x)}}{d}+\frac {40 a b^2 \tan ^{\frac {7}{2}}(c+d x)}{7 d}\right )+\frac {2 b^2 \tan ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))}{9 d}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {1}{9} \left (\frac {18 \left (\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \int \frac {1-\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}-\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \left (\frac {1}{2} \int \frac {1}{\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}+\frac {1}{2} \int \frac {1}{\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}\right )\right )}{d}+\frac {18 b \left (3 a^2-b^2\right ) \tan ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {6 a \left (a^2-3 b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{d}-\frac {18 b \left (3 a^2-b^2\right ) \sqrt {\tan (c+d x)}}{d}+\frac {40 a b^2 \tan ^{\frac {7}{2}}(c+d x)}{7 d}\right )+\frac {2 b^2 \tan ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))}{9 d}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {1}{9} \left (\frac {18 \left (\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \int \frac {1-\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}-\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \left (\frac {\int \frac {1}{-\tan (c+d x)-1}d\left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}-\frac {\int \frac {1}{-\tan (c+d x)-1}d\left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}\right )\right )}{d}+\frac {18 b \left (3 a^2-b^2\right ) \tan ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {6 a \left (a^2-3 b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{d}-\frac {18 b \left (3 a^2-b^2\right ) \sqrt {\tan (c+d x)}}{d}+\frac {40 a b^2 \tan ^{\frac {7}{2}}(c+d x)}{7 d}\right )+\frac {2 b^2 \tan ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))}{9 d}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {1}{9} \left (\frac {18 \left (\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \int \frac {1-\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}-\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}+\frac {18 b \left (3 a^2-b^2\right ) \tan ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {6 a \left (a^2-3 b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{d}-\frac {18 b \left (3 a^2-b^2\right ) \sqrt {\tan (c+d x)}}{d}+\frac {40 a b^2 \tan ^{\frac {7}{2}}(c+d x)}{7 d}\right )+\frac {2 b^2 \tan ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))}{9 d}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {1}{9} \left (\frac {18 \left (\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \left (-\frac {\int -\frac {\sqrt {2}-2 \sqrt {\tan (c+d x)}}{\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}\right )-\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}+\frac {18 b \left (3 a^2-b^2\right ) \tan ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {6 a \left (a^2-3 b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{d}-\frac {18 b \left (3 a^2-b^2\right ) \sqrt {\tan (c+d x)}}{d}+\frac {40 a b^2 \tan ^{\frac {7}{2}}(c+d x)}{7 d}\right )+\frac {2 b^2 \tan ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))}{9 d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{9} \left (\frac {18 \left (\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\tan (c+d x)}}{\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}\right )-\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}+\frac {18 b \left (3 a^2-b^2\right ) \tan ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {6 a \left (a^2-3 b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{d}-\frac {18 b \left (3 a^2-b^2\right ) \sqrt {\tan (c+d x)}}{d}+\frac {40 a b^2 \tan ^{\frac {7}{2}}(c+d x)}{7 d}\right )+\frac {2 b^2 \tan ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))}{9 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{9} \left (\frac {18 \left (\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\tan (c+d x)}}{\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}+\frac {1}{2} \int \frac {\sqrt {2} \sqrt {\tan (c+d x)}+1}{\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}\right )-\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}+\frac {18 b \left (3 a^2-b^2\right ) \tan ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {6 a \left (a^2-3 b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{d}-\frac {18 b \left (3 a^2-b^2\right ) \sqrt {\tan (c+d x)}}{d}+\frac {40 a b^2 \tan ^{\frac {7}{2}}(c+d x)}{7 d}\right )+\frac {2 b^2 \tan ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))}{9 d}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {1}{9} \left (\frac {18 \left (\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \left (\frac {\log \left (\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2}}\right )-\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}+\frac {18 b \left (3 a^2-b^2\right ) \tan ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {6 a \left (a^2-3 b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{d}-\frac {18 b \left (3 a^2-b^2\right ) \sqrt {\tan (c+d x)}}{d}+\frac {40 a b^2 \tan ^{\frac {7}{2}}(c+d x)}{7 d}\right )+\frac {2 b^2 \tan ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))}{9 d}\)

input
Int[Tan[c + d*x]^(5/2)*(a + b*Tan[c + d*x])^3,x]
 
output
(2*b^2*Tan[c + d*x]^(7/2)*(a + b*Tan[c + d*x]))/(9*d) + ((18*(-1/2*((a + b 
)*(a^2 - 4*a*b + b^2)*(-(ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]]/Sqrt[2]) + 
 ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]]/Sqrt[2])) + ((a - b)*(a^2 + 4*a*b 
+ b^2)*(-1/2*Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]]/Sqrt[2] + 
Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]]/(2*Sqrt[2])))/2))/d - ( 
18*b*(3*a^2 - b^2)*Sqrt[Tan[c + d*x]])/d + (6*a*(a^2 - 3*b^2)*Tan[c + d*x] 
^(3/2))/d + (18*b*(3*a^2 - b^2)*Tan[c + d*x]^(5/2))/(5*d) + (40*a*b^2*Tan[ 
c + d*x]^(7/2))/(7*d))/9
 

3.6.69.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 1482
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
a*c, 2]}, Simp[(d*q + a*e)/(2*a*c)   Int[(q + c*x^2)/(a + c*x^4), x], x] + 
Simp[(d*q - a*e)/(2*a*c)   Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ[{a 
, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(- 
a)*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4011
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[d*((a + b*Tan[e + f*x])^m/(f*m)), x] + Int 
[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x], x] 
, x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 
 0] && GtQ[m, 0]
 

rule 4017
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2/f   Subst[Int[(b*c + d*x^2)/(b^2 + x^4), x], x, Sq 
rt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] & 
& NeQ[c^2 + d^2, 0]
 

rule 4049
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b^2*(a + b*Tan[e + f*x])^(m - 2)*((c 
+ d*Tan[e + f*x])^(n + 1)/(d*f*(m + n - 1))), x] + Simp[1/(d*(m + n - 1)) 
 Int[(a + b*Tan[e + f*x])^(m - 3)*(c + d*Tan[e + f*x])^n*Simp[a^3*d*(m + n 
- 1) - b^2*(b*c*(m - 2) + a*d*(1 + n)) + b*d*(m + n - 1)*(3*a^2 - b^2)*Tan[ 
e + f*x] - b^2*(b*c*(m - 2) - a*d*(3*m + 2*n - 4))*Tan[e + f*x]^2, x], x], 
x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2 
, 0] && NeQ[c^2 + d^2, 0] && IntegerQ[2*m] && GtQ[m, 2] && (GeQ[n, -1] || I 
ntegerQ[m]) &&  !(IGtQ[n, 2] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])) 
)
 

rule 4113
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) 
+ (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[C*((a + 
 b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Int[(a + b*Tan[e + f*x])^m*Si 
mp[A - C + B*Tan[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && 
NeQ[A*b^2 - a*b*B + a^2*C, 0] &&  !LeQ[m, -1]
 
3.6.69.4 Maple [A] (verified)

Time = 0.21 (sec) , antiderivative size = 308, normalized size of antiderivative = 0.94

method result size
derivativedivides \(\frac {\frac {2 b^{3} \left (\tan ^{\frac {9}{2}}\left (d x +c \right )\right )}{9}+\frac {6 a \,b^{2} \left (\tan ^{\frac {7}{2}}\left (d x +c \right )\right )}{7}+\frac {6 a^{2} b \left (\tan ^{\frac {5}{2}}\left (d x +c \right )\right )}{5}-\frac {2 b^{3} \left (\tan ^{\frac {5}{2}}\left (d x +c \right )\right )}{5}+\frac {2 a^{3} \left (\tan ^{\frac {3}{2}}\left (d x +c \right )\right )}{3}-2 a \,b^{2} \left (\tan ^{\frac {3}{2}}\left (d x +c \right )\right )-6 a^{2} b \left (\sqrt {\tan }\left (d x +c \right )\right )+2 b^{3} \left (\sqrt {\tan }\left (d x +c \right )\right )+\frac {\left (3 a^{2} b -b^{3}\right ) \sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}+\frac {\left (-a^{3}+3 a \,b^{2}\right ) \sqrt {2}\, \left (\ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}}{d}\) \(308\)
default \(\frac {\frac {2 b^{3} \left (\tan ^{\frac {9}{2}}\left (d x +c \right )\right )}{9}+\frac {6 a \,b^{2} \left (\tan ^{\frac {7}{2}}\left (d x +c \right )\right )}{7}+\frac {6 a^{2} b \left (\tan ^{\frac {5}{2}}\left (d x +c \right )\right )}{5}-\frac {2 b^{3} \left (\tan ^{\frac {5}{2}}\left (d x +c \right )\right )}{5}+\frac {2 a^{3} \left (\tan ^{\frac {3}{2}}\left (d x +c \right )\right )}{3}-2 a \,b^{2} \left (\tan ^{\frac {3}{2}}\left (d x +c \right )\right )-6 a^{2} b \left (\sqrt {\tan }\left (d x +c \right )\right )+2 b^{3} \left (\sqrt {\tan }\left (d x +c \right )\right )+\frac {\left (3 a^{2} b -b^{3}\right ) \sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}+\frac {\left (-a^{3}+3 a \,b^{2}\right ) \sqrt {2}\, \left (\ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}}{d}\) \(308\)
parts \(\frac {a^{3} \left (\frac {2 \left (\tan ^{\frac {3}{2}}\left (d x +c \right )\right )}{3}-\frac {\sqrt {2}\, \left (\ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}\right )}{d}+\frac {b^{3} \left (\frac {2 \left (\tan ^{\frac {9}{2}}\left (d x +c \right )\right )}{9}-\frac {2 \left (\tan ^{\frac {5}{2}}\left (d x +c \right )\right )}{5}+2 \left (\sqrt {\tan }\left (d x +c \right )\right )-\frac {\sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}\right )}{d}+\frac {3 a^{2} b \left (\frac {2 \left (\tan ^{\frac {5}{2}}\left (d x +c \right )\right )}{5}-2 \left (\sqrt {\tan }\left (d x +c \right )\right )+\frac {\sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}\right )}{d}+\frac {3 a \,b^{2} \left (\frac {2 \left (\tan ^{\frac {7}{2}}\left (d x +c \right )\right )}{7}-\frac {2 \left (\tan ^{\frac {3}{2}}\left (d x +c \right )\right )}{3}+\frac {\sqrt {2}\, \left (\ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}\right )}{d}\) \(458\)

input
int(tan(d*x+c)^(5/2)*(a+b*tan(d*x+c))^3,x,method=_RETURNVERBOSE)
 
output
1/d*(2/9*b^3*tan(d*x+c)^(9/2)+6/7*a*b^2*tan(d*x+c)^(7/2)+6/5*a^2*b*tan(d*x 
+c)^(5/2)-2/5*b^3*tan(d*x+c)^(5/2)+2/3*a^3*tan(d*x+c)^(3/2)-2*a*b^2*tan(d* 
x+c)^(3/2)-6*a^2*b*tan(d*x+c)^(1/2)+2*b^3*tan(d*x+c)^(1/2)+1/4*(3*a^2*b-b^ 
3)*2^(1/2)*(ln((1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1-2^(1/2)*tan(d*x+ 
c)^(1/2)+tan(d*x+c)))+2*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))+2*arctan(-1+2^( 
1/2)*tan(d*x+c)^(1/2)))+1/4*(-a^3+3*a*b^2)*2^(1/2)*(ln((1-2^(1/2)*tan(d*x+ 
c)^(1/2)+tan(d*x+c))/(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))+2*arctan(1+2 
^(1/2)*tan(d*x+c)^(1/2))+2*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))))
 
3.6.69.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1431 vs. \(2 (282) = 564\).

Time = 0.30 (sec) , antiderivative size = 1431, normalized size of antiderivative = 4.36 \[ \int \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^3 \, dx=\text {Too large to display} \]

input
integrate(tan(d*x+c)^(5/2)*(a+b*tan(d*x+c))^3,x, algorithm="fricas")
 
output
1/630*(315*d*sqrt((6*a^5*b - 20*a^3*b^3 + 6*a*b^5 + d^2*sqrt(-(a^12 - 30*a 
^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12)/d^ 
4))/d^2)*log(((a^3 - 3*a*b^2)*d^3*sqrt(-(a^12 - 30*a^10*b^2 + 255*a^8*b^4 
- 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12)/d^4) - (3*a^8*b - 46*a^6 
*b^3 + 60*a^4*b^5 - 18*a^2*b^7 + b^9)*d)*sqrt((6*a^5*b - 20*a^3*b^3 + 6*a* 
b^5 + d^2*sqrt(-(a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4* 
b^8 - 30*a^2*b^10 + b^12)/d^4))/d^2) - (a^12 - 12*a^10*b^2 - 27*a^8*b^4 + 
27*a^4*b^8 + 12*a^2*b^10 - b^12)*sqrt(tan(d*x + c))) - 315*d*sqrt((6*a^5*b 
 - 20*a^3*b^3 + 6*a*b^5 + d^2*sqrt(-(a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 45 
2*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12)/d^4))/d^2)*log(-((a^3 - 3*a* 
b^2)*d^3*sqrt(-(a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b 
^8 - 30*a^2*b^10 + b^12)/d^4) - (3*a^8*b - 46*a^6*b^3 + 60*a^4*b^5 - 18*a^ 
2*b^7 + b^9)*d)*sqrt((6*a^5*b - 20*a^3*b^3 + 6*a*b^5 + d^2*sqrt(-(a^12 - 3 
0*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12) 
/d^4))/d^2) - (a^12 - 12*a^10*b^2 - 27*a^8*b^4 + 27*a^4*b^8 + 12*a^2*b^10 
- b^12)*sqrt(tan(d*x + c))) - 315*d*sqrt((6*a^5*b - 20*a^3*b^3 + 6*a*b^5 - 
 d^2*sqrt(-(a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 
 30*a^2*b^10 + b^12)/d^4))/d^2)*log(((a^3 - 3*a*b^2)*d^3*sqrt(-(a^12 - 30* 
a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12)/d 
^4) + (3*a^8*b - 46*a^6*b^3 + 60*a^4*b^5 - 18*a^2*b^7 + b^9)*d)*sqrt((6...
 
3.6.69.6 Sympy [F]

\[ \int \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^3 \, dx=\int \left (a + b \tan {\left (c + d x \right )}\right )^{3} \tan ^{\frac {5}{2}}{\left (c + d x \right )}\, dx \]

input
integrate(tan(d*x+c)**(5/2)*(a+b*tan(d*x+c))**3,x)
 
output
Integral((a + b*tan(c + d*x))**3*tan(c + d*x)**(5/2), x)
 
3.6.69.7 Maxima [A] (verification not implemented)

Time = 0.36 (sec) , antiderivative size = 280, normalized size of antiderivative = 0.85 \[ \int \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^3 \, dx=\frac {280 \, b^{3} \tan \left (d x + c\right )^{\frac {9}{2}} + 1080 \, a b^{2} \tan \left (d x + c\right )^{\frac {7}{2}} + 504 \, {\left (3 \, a^{2} b - b^{3}\right )} \tan \left (d x + c\right )^{\frac {5}{2}} - 630 \, \sqrt {2} {\left (a^{3} - 3 \, a^{2} b - 3 \, a b^{2} + b^{3}\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) - 630 \, \sqrt {2} {\left (a^{3} - 3 \, a^{2} b - 3 \, a b^{2} + b^{3}\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) + 315 \, \sqrt {2} {\left (a^{3} + 3 \, a^{2} b - 3 \, a b^{2} - b^{3}\right )} \log \left (\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right ) - 315 \, \sqrt {2} {\left (a^{3} + 3 \, a^{2} b - 3 \, a b^{2} - b^{3}\right )} \log \left (-\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right ) + 840 \, {\left (a^{3} - 3 \, a b^{2}\right )} \tan \left (d x + c\right )^{\frac {3}{2}} - 2520 \, {\left (3 \, a^{2} b - b^{3}\right )} \sqrt {\tan \left (d x + c\right )}}{1260 \, d} \]

input
integrate(tan(d*x+c)^(5/2)*(a+b*tan(d*x+c))^3,x, algorithm="maxima")
 
output
1/1260*(280*b^3*tan(d*x + c)^(9/2) + 1080*a*b^2*tan(d*x + c)^(7/2) + 504*( 
3*a^2*b - b^3)*tan(d*x + c)^(5/2) - 630*sqrt(2)*(a^3 - 3*a^2*b - 3*a*b^2 + 
 b^3)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*sqrt(tan(d*x + c)))) - 630*sqrt(2)*( 
a^3 - 3*a^2*b - 3*a*b^2 + b^3)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2*sqrt(tan(d 
*x + c)))) + 315*sqrt(2)*(a^3 + 3*a^2*b - 3*a*b^2 - b^3)*log(sqrt(2)*sqrt( 
tan(d*x + c)) + tan(d*x + c) + 1) - 315*sqrt(2)*(a^3 + 3*a^2*b - 3*a*b^2 - 
 b^3)*log(-sqrt(2)*sqrt(tan(d*x + c)) + tan(d*x + c) + 1) + 840*(a^3 - 3*a 
*b^2)*tan(d*x + c)^(3/2) - 2520*(3*a^2*b - b^3)*sqrt(tan(d*x + c)))/d
 
3.6.69.8 Giac [F(-1)]

Timed out. \[ \int \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^3 \, dx=\text {Timed out} \]

input
integrate(tan(d*x+c)^(5/2)*(a+b*tan(d*x+c))^3,x, algorithm="giac")
 
output
Timed out
 
3.6.69.9 Mupad [B] (verification not implemented)

Time = 11.57 (sec) , antiderivative size = 1796, normalized size of antiderivative = 5.48 \[ \int \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^3 \, dx=\text {Too large to display} \]

input
int(tan(c + d*x)^(5/2)*(a + b*tan(c + d*x))^3,x)
 
output
tan(c + d*x)^(3/2)*((2*a^3)/(3*d) - (2*a*b^2)/d) + tan(c + d*x)^(1/2)*((2* 
b^3)/d - (6*a^2*b)/d) - tan(c + d*x)^(5/2)*((2*b^3)/(5*d) - (6*a^2*b)/(5*d 
)) + atan((((8*(4*b^3*d^2 - 12*a^2*b*d^2)*((6*a*b^5 + 6*a^5*b - a^6*1i + b 
^6*1i - a^2*b^4*15i - 20*a^3*b^3 + a^4*b^2*15i)/(4*d^2))^(1/2))/d^3 - (16* 
tan(c + d*x)^(1/2)*(a^6 - b^6 + 15*a^2*b^4 - 15*a^4*b^2))/d^2)*((6*a*b^5 + 
 6*a^5*b - a^6*1i + b^6*1i - a^2*b^4*15i - 20*a^3*b^3 + a^4*b^2*15i)/(4*d^ 
2))^(1/2)*1i - ((8*(4*b^3*d^2 - 12*a^2*b*d^2)*((6*a*b^5 + 6*a^5*b - a^6*1i 
 + b^6*1i - a^2*b^4*15i - 20*a^3*b^3 + a^4*b^2*15i)/(4*d^2))^(1/2))/d^3 + 
(16*tan(c + d*x)^(1/2)*(a^6 - b^6 + 15*a^2*b^4 - 15*a^4*b^2))/d^2)*((6*a*b 
^5 + 6*a^5*b - a^6*1i + b^6*1i - a^2*b^4*15i - 20*a^3*b^3 + a^4*b^2*15i)/( 
4*d^2))^(1/2)*1i)/(((8*(4*b^3*d^2 - 12*a^2*b*d^2)*((6*a*b^5 + 6*a^5*b - a^ 
6*1i + b^6*1i - a^2*b^4*15i - 20*a^3*b^3 + a^4*b^2*15i)/(4*d^2))^(1/2))/d^ 
3 - (16*tan(c + d*x)^(1/2)*(a^6 - b^6 + 15*a^2*b^4 - 15*a^4*b^2))/d^2)*((6 
*a*b^5 + 6*a^5*b - a^6*1i + b^6*1i - a^2*b^4*15i - 20*a^3*b^3 + a^4*b^2*15 
i)/(4*d^2))^(1/2) - (16*(3*a*b^8 - a^9 + 8*a^3*b^6 + 6*a^5*b^4))/d^3 + ((8 
*(4*b^3*d^2 - 12*a^2*b*d^2)*((6*a*b^5 + 6*a^5*b - a^6*1i + b^6*1i - a^2*b^ 
4*15i - 20*a^3*b^3 + a^4*b^2*15i)/(4*d^2))^(1/2))/d^3 + (16*tan(c + d*x)^( 
1/2)*(a^6 - b^6 + 15*a^2*b^4 - 15*a^4*b^2))/d^2)*((6*a*b^5 + 6*a^5*b - a^6 
*1i + b^6*1i - a^2*b^4*15i - 20*a^3*b^3 + a^4*b^2*15i)/(4*d^2))^(1/2)))*(( 
6*a*b^5 + 6*a^5*b - a^6*1i + b^6*1i - a^2*b^4*15i - 20*a^3*b^3 + a^4*b^...